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Abstract

Scalar and vector interactions, with the scalar interaction coupled to a composite spin-
1/2 system so as to cause a shift of its mass, are shown to obey a low-energy theorem
which guarantees that the second order interaction due to z-graphs is the same as for
a point Dirac particle. Off-shell and contact interactions appropriate to the composite
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The use of the Dirac equation in nuclear physics has been a subject of interest
and debate in recent years. One of jis outstanding successes is in elastic scattering
of protons by nuclei. [1,2] Quite large scalar and vector interactions, which almost
cancel one another, characterize the proton-nucleus inleraction. Solving the Dirac
equation with an attractive scalar potential and a repulsive vector one, each of
magnitude about 300 MeV, produces a good description of spin observables at
intermediate energies. [3-7) The principal effect is due to z-graphs when the Dirac
equation is used, but it may be understood also at a simpler, classical level.

Consider a classical hamiitonian of the form

H=V 4+ /(M+5)23p (1

where V is the time-component of a vector potential and $ is a scalar potential,
both of which are taken to be spatially uniform. Expanding in S to second order
yields,

M 2
H=civiTss Bogry )

where € = \/M? 4 p? The tomentum dependent repulsive potential term in
Eq. (2} provides the main relativistic effect in proton scattering by nuclei at
intermediate energies.

To obtain the same resulis from the Dirac equation with scalar and vector
potentials, one reduces the energy expression to the form,

E’i‘l' = (( + v++ + vpair)ﬂ): (3)
where
vH =y 4 ES (4)
€
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is the z-graph contribution. To second order it is the same as in Eq. (2). For a
ronmiposite system such as a nucleon, general arguments have heen presented that
% graphs should be suppressed strongly. [8-11] Thus the correctness of Vpair as
obtained from the Dirac equation for a nucleon is in doubt, notwithstanding the
classical basis for the effect. I

In this Leiter, we show that there is a low-energy theorem for both scalar and
vector interactions which guarantecs the correctness of the second order result
Eq. (5). The result for the vector interaction is a straightforward generaliza-
tion of the low-energy theorem familiar from Complon scattering [12,13] (even
though the vector interaction here is purely tongitudinal), but the result for a
scalar interaction is a consequence of the observations that (i) an external scalar
interaction S may be defined which acts to shift the mass of any composile sys-
tem from M to M + S, and (i) the scalar interaction so defined satisfies Ward
identities which quarantee that the second order potential for the scattering of
any composite spin-1/2 bound state gives the universal result {3} at low energy.

To show explicitly how the low-energy theorem emerges for the scalar inter-
action, consider the following simple model lagrangian

L= 90— m) + 110,06 - 128%] - giys?. (6)

Assume that this system has a bound state of mass M and spin-1/2 which is
composed of the elementary fermion of mass m and the scalar boson of mass I
By scaling all parameters in the lagrangian with dimensions of mass to new values
m— Am, y - dp, g — A~lg, and similarly scaling all cutoff or renormalization
masses associated with the theory, it is clear that the bound state mass M will
be scaled to AM. To obtain a scalar interaction which satisfies the requirement
(i) above, choose A = ] + S/M, which implies that the lagrangian which includes
interactions of the scalar field S has the form (to first order in 5)

L—L—pS, (7)
where the scale-breaking charge associated with the mass scaling is
p= (m/M)Y + 2u/M)$? ~ (g/M)gug?, (8)

In general, this scale-breaking charge p is proportional to the divergence of the
dilatation current of the system, including any anomalous contributions generated
by scaling of the cutoff masses required to regularize the model.

The assumption that the scalar interaction is given by the scale-breaking
charge p allows us to obtain a War identity for the vertex function for the mnter-
action of the scalar field with the composite fermion, AS(p’, p). Before obtaining
this, recall the Ward identity for the vertex function for the vector interaction,
A%(p’, p), which is

oy P '
A(p, p) = ——515:1 = ~ A0y’ - 2°(ALp + B, )
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where the self energy, £(p), has the general form
E(p) = A*)B + B(p?), (10)

with A and B scalar functions, and A, = A(M?), A, = dA(p*)/dp®|pa_psa, and
similarly for Bj. Although a detailed expression for E(p) is not required, it is
straightforward to obtain one from the lagrangian of Eq. (6), in which case ¥ is
obtained from a loop graph involving a fermion and a scalar meson propagator.
Note that only the time component of the current is needed.

The Ward identity for the scalar vertex has a form similar to Eq. (9). Exam-
ination of the lowest order Feynman diagrams in our simple model shows that
the vertex function corresponding te insertion of the charge p, in the limit where
g=p' ~p—0,is

s _ mOX(p) s OL(p) g I(p)
A%(p.p) = M 8m M Op M 8g
A 8%
it oh ()

where A is the cutoffl mass. Using the fact that ¥ is dimensionless, and hence
mvariant when all parameters with the dimensions of mass are scaled, e.g.,

E(m,p,A,g,po): E(’\m: A.ﬂ‘ilA!A_]gl’\pﬂ'): (]2)
and expanding to first order about A = 1, one finds
s Pa 9%(p) rP2p /
= - =—Ap— — —(A .
App) = BB - A B P iy ) (13)

'This equation is a direcl consequence of a Ward identity for the divergence of the
dilatation current [14) and the low-energy theorem which we will derive depends
on the existence of such an identity.

We are now ready to use the identity (13) to prove the low-energy theorem
for the scalar and vector interaction. The propagator of the composite spin-1/2
system of mass M and four-momentum p may be written

1
G(p)_TT(;;)' (14)

By assumption, there is a pole in G(p) at p= M. Expanding the propagator
about the bound-state pole, one finds

1
pP—M

Go) = 2 +8G(p)). (15)

where
Z2= —{Ao +2M[M Ay + ByJ} ' = —(54) ", (16)

1s a wave function normalization factor with = dE(p)/dply=p . Nonelementary
propagation due to excited states of invariant masses greater Lthan M gives rise
to

M+p

6G(p) = 2, Y]

o+ Do(p— M)+,

where X = d*L(p)/dp?|;-p and terms omitted from the expansion are higher
order in p2 ~ M? and do not play a role in the low-energy limit. The detailed
form of the function Dy is not required for the proof of the low-energy theorem
involving scalar interactions. The usual spectral expansion of the positive-energy
pole term in G(p) shows that the ground state of the composite systemn has
the positive-energy wave function Zzlnu(p), where u(p} is a Dirac spinor for an
elementary fermion of mass M.

To sinplify the notation, we define a vertex which combines the scalar and
vector interactions and coupling strengths as follows,

A®Y (p.p) = SAS(p,p) + VA%p, p). (17)

Forward scattering of the composite fermion from the scalar and vector fields
is studied in second order and in the limit g — 0, where ¢ is the momentum
exchanged with the source. The diagrams of Figure 1 yield for the potential V
the following expression,

M ) ,
V= XZ;”“(P){ASV(P,P +9)G(p+ A (p +4q,p)

+Hg — —¢) + CS"(pm)}%”n(p) : (18)

where the first term in the curly braces is the direct pole term, Fig. la, the second
term with ¢ — —gq the crossed pole term, Fig. b, and the third, contact-like term,
Fig. 1c describes processes involving scattering from the constituents within a
single self-energy bubble. Note that the iteration of the first order potential is
contained in Eq. (18). It must be subtracted to avoid double counting. The
appropriate subtraction is based on the second-order scattering by the equivalent
potential, S + 4°V, using the positive-energy pole part of the Dirac propagator.
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Fig. 1. Diagramatic representation of the three contributions to Eq. (18).

For time-like vector interactions at zero momentum transfer, the contact term
is V2C00(p, ?) = Vz(')zE(p)/Bpﬂap“. For scalar interactions the contact term
corresponds to two insertions of Eq. (8). By expanding Eq. (12) to second order
about A = 1, it is possible to show that the interaction vertex to second order in
pis

C¥(p.p) = (pups / M2)25(p) /p,.Op,
+(2/M?)p,05(p)/9p, . (19)

There are also cross terms involving one p and one vector insertion. Collecting
the various contact terms and coupling strengths, we have,

C™(p.p) = S*CS3(p,p) + 2SVCO5 (p, p) + VZC"(p, p)

whete C%%(p, p) = ~9A5(p, p)/3po.

Because a denominator in G(p+q) vanishes with g, it is necessary to evaluate
mumerator factors correct to first order jn ¢ before going to the limit ¢ — 0. This
involves expanding the vertex ASY(p'. p) about por p'in a Taylor’s series,

6

. AV (', p)
AV (p,p+q) = A5V (p, p)+qp[‘—ﬁ3( ,
Py p'=p

+e (20)

and a similar expansion of ASVip - ¢.p). Due to symmetries in the expansion,
these contributions can be expressed also as second derivatives of X(p) with re-
spect to momenta. Thus there are cancellations with the contact terms.

Finally, the SS contribution to the botential (18) follows from substituting
(13), (15), (19), and (20). Keeping only terms which contribute as g — 0, we find

252 2 282
Gt lerE-n -2 =B (21)

where £ = Z; M} /2. The contributions to Eq. (21) arise as follows: the p? term
from the composite particle z-graphs, £ from the off-shell propagation 6(GG(p), £ 1
from the contact terms, and (1 ~ 2¢) from the off-shell expansion of the vertex
functions, Eq. (20). Cancellations render the overall result independent of the
factor £. This demonstrates the low-energy theorem for the scalar interaction
given in Eq. (8), and shows that a scalar interaction capable of shifting the mass
generates a repulsive potential of the same form as that, obtained classically from
a mass shift in Eq. (1) or from the Dirac equation from the z-graph contribution,

V=

vpm‘r-

We have carried out a similar analysis for the VV and SV terms and find that
the second order potential is zero, in agreement, with Eq. (5). This result emerges
from the cancellation of five terms: the four which arose in the scalar case plus
a new term. This new term appears because of the subtraction mentioned below
Eq. (18}).

The low-energy theorem establishes an equivalence between second order scat-
tering of a composite spin-1 /2 system by scalar plus vector interactions of arhbi-
trary strength and the second-order scattering of a Dirac particle by similar
potentials. The key condition is that the scalar interaction be coupled to the
scale-breaking charge so as to cause a mass shift. The composite particle z-graph
contributions due to such a scalar interaction are not suppressed.

The analysis suggests conditions under which the relativistic effect in proton-
nucleus scatiering may be unaflected by compositeness of the nucleon. Whether
these conditions apply to QCI remains an open question.
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